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EXECUTIVE SUMMARY

ASSESSMENT OF HY-8 AND HEC-RAS BRIDGE
MODELS FOR LARGE-SPAN WATER-

ENCAPSULATING STRUCTURES

Introduction

Current INDOT policy requires that culvert-like structures with

spans greater than 20 feet be treated for purposes of hydraulic

analysis as a bridge, and hence mandates the use of software

such as HEC-RAS for predicting the headwater, rather than

the culvert-specific software, HY-8. In this context, culvert-like

structures are assumed to have a standard inlet geometry (e.g.,

such as those already modeled in HY-8) and a constant barrel

geometry. As larger-span culverts with spans greater than 20 feet

have become more readily available, they may provide a cost-

effective alternative to traditional bridges, and the technical basis

of the current INDOT policy needs to be re-examined, and more

flexibility in allowing conventional culvert hydraulic analysis to

be applied to structures with spans larger than 20 feet may be

warranted.

The main aim of the present study was a comparative assess-

ment of conventional culvert hydraulics, specifically as implemen-

ted in HY-8, and bridge-hydraulics modeling, as implemented in

the HEC-RAS bridge models, in applications where the water-

encapsulating structure has a large span relative to its streamwise

length. Laboratory experiments were performed with model box

culverts of span 1.5 feet and two streamwise lengths, 2.1 feet and

8 feet, and performance curves describing the variation of head-

water with discharge were obtained. The effects of bed roughness,

the presence or absence of a cover (if present, the rise was 0.5 feet),

and a range of tailwater levels were investigated. The laboratory

observations were compared with predictions by HY-8 and HEC-

RAS models, and the model performance was assessed.

Findings

In general, HY-8 predictions were found to be as good as, and

in some cases superior to, the HEC-RAS predictions, for both

long and short structures. With notable exceptions, the HY-8

predictions also tended to be more conservative in predicting

higher headwater values than the HEC-RAS bridge predictions,

which exhibited a pronounced tendency to underestimate the

headwater.

The generally good performance of the HY-8 model was

attributed to the empirical information in HY-8 being more

tailored to the specific standardized geometry of culvert-like struc-

tures, and the automatic inclusion of roughness effects, whereas

HEC-RAS, at least when used with default coefficients and

settings, relied on generic coefficients and under certain conditions

neglected roughness effects. Discrepancies between HY-8 predic-

tions and observations (for both longer and shorter structures)

are not necessarily due solely to inadequacies of culvert modeling

as such, but are in part rather due to the specific HY-8 modeling

choices, such as the polynomial approximation for the inlet control

(I.C.) model, and to the strategy of choosing the higher of the inlet-

control and the outlet-control estimates, which does however lead

to the already noted more conservative HY-8 predictions.

Despite the good performance of the HY-8 model in predicting

the study cases, its limitations should be recognized. It is restricted

to culvert-like structures with standard inlet and constant barrel

geometries, and making good predictions requires accurate input

data. HY-8 models a structure in isolation, and if other nearby

structures or stream features affect markedly the water surface

elevations, which may become more likely for larger streams for

which larger-span culverts come under consideration, then accu-

rate specification of tailwater may become problematic. The more

comprehensive HEC-RAS is capable of modeling a more complex

stream system, in which the culvert being examined is only one

model element among several, adding to the robustness of pre-

dictions. Note that in such a case, the culvert-like structure might

still be modeled as a culvert, so that the important distinction is

not necessarily between culvert and bridge models, but between

modeling a structure in isolation or modeling it as part of a

system. Similarly, there may be other issues such as those stem-

ming from debris or stream instability, which might arise more

frequently for larger streams, for which neither HY-8 nor HEC-

RAS bridge models has distinct advantages, but which may

receive greater attention within a bridge-hydraulic design context

than in the traditional culvert-hydraulic design context. Thus, a

preference for HEC-RAS modeling for larger-span larger-stream

situations may be based on concerns that are not narrowly

hydraulic in nature, but this should be more explicitly acknowl-

edged rather than, as is often done, making dubious claims regard-

ing the limitations of culvert hydraulics.

Based on the results of the study, it was concluded that the

culvert-hydraulic analysis of large-span (.20 feet) culvert-like

structures can be technically justified where the structure could

be considered in isolation and accurate input and other empirical

data, such as inlet control coefficients, are available and appro-

priate. It was therefore recommended that INDOT hydraulic

design policy adopt a more flexible stance, allowing large-span

culvert-like structures to be analyzed using conventional culvert

hydraulic models, such as HY-8. No limit on span was determined

in the study, but it was suggested that prudence dictate an initial

phase during which the largest span permitted to be analyzed by

HY-8 be limited to, for example, 36 feet. If practical experience in

this initial phase did not reveal any serious unintended short-

comings, then the permissible largest span could be increased

further if this was deemed desirable.
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1. INTRODUCTION, PROBLEM STATEMENT,
APPROACH, AND SCOPE

Culverts and bridges are both water-encapsulating
structures, and share some basic similarities. Tradi-
tionally, culverts have been viewed as a small-stream
(ditches) solution, while bridges are associated with
larger crossings, and therefore of larger scale. This makes
understandable the current INDOT policy (INDOT,
2013; Sec. 203-3, to be referred to as INDOT2013-203)
regarding the hydraulic design of both types of structures
which requires that any structure with span larger than
20 ft be treated from a hydraulic analysis point of view
as a bridge, and to be analyzed using the HEC-RAS
software. The technical basis for this policy is however
somewhat obscure. The most recent edition of the
standard FHWA culvert manual (Schall Thompson,
Zerges, Kilgore, & Morris, 2012; to be referred to as
HDS-5-2012) notes that ‘‘culverts exceeding a 20 ft
(6.1 m) span width (either as a single barrel or the total
width of a multiple barrel crossing) are considered
bridges in the National Bridge Inspection Standards
(NBIS) and therefore subject to routine inspection
according to NBIS requirements.’’ Thus, the somewhat
arbitrary value of 20 ft may have originated at least in
part from an administrative or regulatory rather than a
purely technical hydraulic distinction.

Nevertheless, HDS-5-2012 ultimately recommends
that ‘‘large culverts with free surface flow through the
structure (i.e., no headwater) are typically better anal-
yzed based on the gradually varied open channel flow
concepts used in bridge analysis than the calcula-
tion procedures detailed in this publication.’’ and that
‘‘Based on NBIS regulations, as well as hydraulic issues,
a reasonable guideline is to use bridge based modeling
for a single culvert with a span of 20 ft (6.1 m) or more,
given that such structures will typically operate with
free surface flow.’’ It should be pointed out that the
original HDS-5 (Normann, Houghtalen, & Johnson,
1985; to be referred to as HDS-5-1985) did not give any
specific recommendation regarding a maximum span
appropriate for a culvert hydraulic analysis.

The practice in different U.S. states is not uniform.
In the New York Highway Design Manual (NYSDOT,
2011), ‘‘It is recommended that for culverts with spans
over 3.65 m (12 ft) a HEC-RAS analysis or an equally
sophisticated backwater analysis be used to determine
the size and shape of the culvert. For smaller culverts,
an approximate analysis such as HY8 may be used with
the criteria outlined in Chapter 8 of this manual.’’ Other
states do not base the bridge-culvert distinction solely
on span size, but may include other criteria. The South
Dakota Dept. of Transportation (SDDOT, 2013) Drai-
nage Manual Chapter 14 states that ‘‘Any structure
designed hydraulically to operate in free surface flow at
the design event is treated as a bridge in this Chapter,
regardless of actual length.’’ Similarly, the Kentucky
Dept. of Transportation (KYTC, 2010) Drainage Man-
ual, Section D605-13 states that ‘‘for large structures
with small length to width ratios, culvert analysis

procedures become inaccurate. For these situations,
a more appropriate analysis can be conducted using
water surface profile calculations commonly used in
bridge design. Generally speaking large culverts with
spans over 20 ft or culverts that have drainage areas in
excess of one square mile will be analyzed with water
surface profile analyses.’’

A typical culvert may be distinguished from a bridge
through several characteristics that may have implica-
tions for the hydraulic analysis:

N standardized inlet geometry,

N a comparatively larger streamwise length relative to some
opening dimension such as the span or rise (due to a pre-
ference for earthen embankment cover),

N a uniform barrel geometry all along the length of the
barrel, and

N an absence of piers (or similar structures) at least for
single-barrel culverts.

In the following, the term ‘‘culvert-like structures’’ is
applied to water-encapsulating structures with the above
characteristics, except possibly for the feature of large
streamwise length. While culverts are most commonly
available with spans of less than 20 ft, current culvert
technology allows spans exceeding 50 ft. Non-hydraulic
issues, such as structural or geotechnical, were already
discussed in the NCHRP report 473 (McGrath et al.,
2002). Particularly with the interest in three-sided or
bottomless culverts, and in larger culverts for aquatic
organism passage, larger-span culverts are likely to gain
in appeal as a cost-effective alternative to bridges.

Although culverts are more often than bridges
designed to operate with their barrels partially or
wholly full at design flow, this does not imply that the
conventional hydraulic analysis of culvert does not
consider or model inaccurately free-surface flow due
solely to the effect of a large span. Despite the sta-
tements in HDS-5-2012 and in the KYDOT (2010)
Drainage manual, the conventional hydraulic analysis
of culverts as described in either HDS-5-2012 or
HDS-5-1985 is in part based on gradually varied open
channel flow concepts, and in some respects involves
an even more detailed free-surface hydraulic analysis
than is performed in current ‘‘routine’’ bridge hydraulic
analysis. The question may then be raised whether there
is a sound technical basis for the recommended limit
on the culvert span for a culvert hydraulic analysis to
be reliable. This project addresses this question by a
laboratory study complemented by model computa-
tions using standard software. Laboratory flows in
culvert-like structures are modeled as a culvert and
separately as a bridge, and the degree of agreement
between experimental observations and model pre-
dictions was taken to indicate the applicability of the
different models.

The experiments were performed in a relatively large
channel (<3.6 ft wide) with a model rectangular (box)
culvert of span 1.5 ft. Of the differences between bridge
and culvert structures, of primary concern was the
effect of streamwise length. A central concept in the

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2018/14 1



traditional hydraulic analysis of culverts is the distinc-
tion between inlet and outlet control. For a short
(in the streamwise direction) structure, as is usually
the case for a bridge, the distinction becomes less mean-
ingful, and hence does not arise explicitly in discussions
of bridge hydraulics, e.g., in the recent FHWA HDS-7
(Zevenbergen, Arneson, Hunt, & Miller, 2012). The
experimental study therefore investigated both a
‘‘short’’ and a ‘‘long’’ structure, essentially with the same
geometry but differing in the relative streamwise length.

The types of flows were varied from those where
the flow was everywhere subcritical to those where the
flow was critical within the structure, from those where
neither inlet nor outlet was submerged, i.e., free-surface
flow throughout, to the case where only the inlet was
submerged, and the case where both inlet and outlet
were submerged. Also as large-span structures often
have a natural bed with larger flow resistance, the effect
of flow resistance was studied through experiments with
a relatively smooth bed to a bed with significant though
artificial roughness. The observations were compared
with the predictions of the standard culvert analysis
software (HY-8) and the standard bridge-hydraulics
software (HEC-RAS) for the model-scale flow config-
uration. If extraneous scale effects are assumed negli-
gible, this comparison should provide some indication
as to the extent that a culvert or a bridge model is more
appropriate or possibly equally appropriate.

The theoretical bases of the standard bridge model,
specifically those implemented in the HEC-RAS bridge
modeling software, and the standard culvert model,
as implemented in the HY-8 software, are compared in
Chapter 2. Details regarding the experimental study,
including the equipment, experimental design, and pro-
cedure are given in Chapter 3. The experimental results
mainly in the form of culvert performance curves are
then compared with predictions of HY-8 and HEC-
RAS bridge models in Chapter 4, while study conclu-
sions are summarized in Chapter 5.

2. COMPUTER MODELS (HY-8 AND HEC-RAS)

2.1 HEC-RAS Bridge Modeling Approach for
Application to Culvert-Like Structures

The recent FHWA HDS-7 manual (Zevenbergen
et al., 2012) provides a comprehensive overview of the
hydraulic design of bridges in the U.S. Its discussion
of traditional one-dimensional steady-flow approach
focused on the use of the HEC-RAS model, which
includes a bridge modeling component. Current pra-
ctice at INDOT (INDOT2013-203, and by extension,
in Indiana) as well as in other states is now based almost
exclusively on the use of HEC-RAS, and this study will
be restricted to this approach to bridge modeling.

Beyond the actual HEC-RAS bridge model, the
HEC-RAS classification of bridge flows provides a
convenient framework for organizing the work of
the current study. The analysis of bridge hydraulics in
HEC-RAS distinguishes between two types of flows
based on whether the water surface reaches the bridge

low chord (high flow) or is everywhere under the
bridge an open channel flow (low flow). The low-flow
definition is especially relevant in the present context,
because as was seen in Chapter 1, a bridge is sometimes
implicitly or explicitly distinguished from a culvert in
operating at low flows as defined here under design
conditions. A schematic is shown in Figure 2.1. For low-
flow problems, various models may be chosen (energy,
momentum, Yarnell, and WSPRO, with the energy only
model being the default), while for high-flow problems,
two approaches (energy only and pressure + weir flow,
with the energy only being the default) are available.
The actual HEC-RAS bridge modeling approach
menu is shown in Figure 2.2. The default options
shown selected in Figure 2.2 will be important in this
study in that the results using these options will be
reported in Chapter 4 in comparison with experimental
observations.

Guidance for the choice of models is framed in terms
of different flow types. For low flows, three types are
distinguished:

i. type A, where the flow is subcritical everywhere (upstream
of, within, and downstream of the structure),

ii. type B, where the flow becomes critical within the struc-
ture, so that the flow is subcritical upstream of the
structure, but supercritical downstream, and

iii. type C, where the flow is supercritical everywhere (which
will not be considered in the present work as it is consi-
dered unusual in the Indiana context).

The flow type is determined in HEC-RAS by a
‘‘momentum’’ comparison of the specific force at critical
depth within the structure with an ‘‘effective’’ specific
force at the downstream (respectively upstream) section
for a subcritical (respectively, supercritical) profile.
Except for a type B flow, the default energy only
model would seem the most generally applicable for
the present case where piers play no role. It also is the
simplest as it does not require any additional input
data. The momentum model is also recommended as
generally applicable, though Brunner (2016; to be
referred to hereafter as the HEC-RAS manual) points
out that the approximation of the weight force assum-
ing an average bed slope might be questionable for
natural cross-sections. For the laboratory model, this
should not be of concern. For all of the HEC-RAS
bridge-model simulations in this study, the default
energy only method for low flows was specified.

HEC-RAS treats type B flows somewhat differently
in detail in that an approximate momentum model is
automatically used to compute a subcritical upstream
flow and a supercritical downstream flow. If this mom-
entum model ‘‘fails to converge on an answer,’’ then
HEC-RAS will automatically switch to an energy
model. As will be noted in Chapter 4.3, at least for
certain examples, HEC-RAS does report unphysical
momentum-based results where energy increases in the
downstream direction, even when the default energy
method is specified. For type B flows, a mixed-flow
regime should be chosen so that both subcritical and
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supercritical flow in different flow reaches can be accom-
modated.

For dealing with high flows, HEC-RAS provides
two approaches (see Figure 2.2), an indirect energy
model and a more direct pressure-flow/weir model. The
default energy approach treats the flow as entirely open
channel, despite the free surface reaching the bridge low
chord, by essentially determining the hydraulic grade
line for that portion of the structure that flows full.
The pressure-flow and/or weir model refers to the use of

a gate or orifice (free-flow or full-flow) model, and for
an overtopping flow, a weir model. The equations of
the gated free-flow model involve only the sections
immediately upstream (and possibly downstream) of
the structure, and so do not include any effects within
the structure (so essentially an inlet-control solution).
The choice of model is left entirely to the user, and
there is no option to choose the higher energy solution
as there is in the low-flow solution. The guidance
given recommends the pressure-flow/weir model if the

Figure 2.2 HEC-RAS menu for bridge modeling approach with default options selected.

Figure 2.1 Schematic of HEC-RAS bridge modeling approach (the present study did not consider the flows and models that are
crossed out).
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inlet but not the outlet is substantially submerged,
including possibly overtopping the structure, and the
energy approach otherwise. The pressure-flow model
does automatically switch to an energy solution if
the latter gives a higher headwater. A full-flow orifice
model is also automatically invoked if both inlet and
outlet are submerged. The present study will not con-
sider the problem of overtopping, but could cover a
range of flows where the guidance would lead to the
use of both models.

An aspect of HEC-RAS modeling of bridges that
differs from HY-8 and that may be relevant in any dif-
ference in results when applied to culverts is the con-
sideration of only two sections within the structure, one
near the inlet and the other near the outlet. An energy
(or momentum) equation applied within the structure
uses only these sections independent of the streamwise
length of the structure. The HEC-RAS practice of plac-
ing sections just upstream and just downstream of the
structure implies that the energy and momentum balances
between the structure and the sections may depend
somewhat on another HEC-RAS practice, namely the
definition of ineffective flow areas.

2.2 HY-8 Culvert Model

The standard software tool, HY-8, implements the
conventional culvert analysis procedure outlined in
HDS-5-2012 (or its earlier editions), though with specific
choices. Because there are various versions of both HY-
8 and HDS-5, it should be specified that the following is
based on the documentation for HY-8 v. 7.3 and HDS-
5-2012. For the present purposes, these should differ
very little if at all from earlier versions.

The concept of hydraulic control plays a central role
in culvert analysis. The location of control, which for
the present purposes will be either at the inlet or at the
outlet, may be considered where the bottleneck restrict-
ing the flow occurs. If there is inlet (respectively outlet)
control, then small changes in the flow (or culvert) char-
acteristics at the outlet (respectively, inlet) will have no
effect on the headwater. The FHWA HDS-5 scheme
generally makes two estimates of headwater, one assum-
ing inlet control, and another assuming outlet control,
and the higher estimate is taken to reflect the loca-
tion of control and hence the actual (true) headwater.
As the HEC-RAS manual points out, this is not
necessarily true, but should give a conservative final
headwater estimate. A practical distinction should be
made between the original inlet-control equations of
HDS-5 (and given later in Chapter 4), and the equations
as implemented in HY-8, which are best-fit fifth-order
polynomial models to these equations. If the flow within
the structure is entirely or partially free surface, the
outlet control estimate is obtained through a direct-
step computation of water surface starting from a
known or estimated water surface elevation (or total
head) at the outlet to where the water surface reaches
the culvert crown or to the inlet otherwise. This outlet-
control estimate does model gradually varied free-surface

flow within the culvert barrel, and is arguably more
accurate than the analogous HEC-RAS computa-
tion that is based on only two sections, despite the
statements to the contrary in HDS-5-2012 and the
KYDOT 2010 Drainage manual. An inaccuracy can
however arise if the conservative strategy of taking
the higher headwater estimate as correct is in fact
incorrect.

The concept of hydraulic control could also be
applied to the bridge hydraulics, but as noted before
discussions of bridge modeling rarely make use of the
concept. This is presumably due to the relatively short
streamwise extent of bridges compared to culverts,
so that the distinction between inlet and outlet, and
hence the distinction between inlet and outlet control
become irrelevant. It may be noted however that, in
the HEC-RAS manual, the term, ‘‘controlling section,’’
is repeatedly used in the discussion of determining the
low-flow type.

2.3 Differences Between the HEC-RAS Bridge Model
Applied to Culvert-Like Structures and the HY-8 Culvert
Model

For the present work, a culvert-like structure is being
assumed to the extent that it is prismatic (the geometry
does not change within the structure) and its slope is
constant (or at least piece-wise constant, as in broken-
back culverts). It is also assumed that the inlet and bar-
rel geometry are either standard or correspond closely
to a standard inlet geometry. Here, the differences in
the treatment of such a structure by the HEC-RAS
bridge model and by HY-8 are examined. The HEC-
RAS bridge model does offer some flexibility in choos-
ing coefficients and settings, but in the following, unless
otherwise specified, it is assumed that default coeffi-
cients and settings are used when referring to the HEC-
RAS bridge model.

2.3.1 Inlet Control

Due to the geometry of a bridge inlet section being
generally non-standard and possibly at least in part
rather irregular, the HEC-RAS modeling of inlet con-
trol flows, such as Type B low flows, must rely on
energy balances with generic inlet loss coefficients (low
flows) or discharge coefficients (high flows). In con-
trast, if the structure inlet is standard, then the inlet
control equations of HY-8 may be viewed as incorpor-
ating coefficients that are more tailored to the indi-
vidual standard geometry. This may be particularly
relevant when common inlet features such as wingwalls
may affect the flow. Differences between a HEC-RAS
bridge and a HY-8 culvert model of such a structure
may be expected when the flow is inlet-controlled, with
larger differences occurring when the implicit ‘‘tailored’’
coefficients of HY-8 differ significantly from the generic
(default) and often constant coefficients of the HEC-
RAS bridge model that may need to be inputted before
a simulation.
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2.3.2 Outlet Control

At least three effects may contribute to differences
between HEC-RAS and HY-8 headwater predic-
tions applied to culvert-type structures under outlet-
controlled conditions. The first effect arises when the
flow becomes critical at (or near) the outlet section. If
the inlet and the outlet geometries of a structure are
exactly the same as assumed here, then if critical flow is
found to occur within the structure, then the default
HEC-RAS bridge model automatically assumes that it
occurs at the inlet section. There is an option to set
beforehand the critical section if found at the outlet for
all Type B flows, but unlike HY8, HEC-RAS does not
determine from hydraulic conditions the location of
control. The second effect arises because the HEC-RAS
bridge model uses only two sections to evaluate the
friction loss within the structure, while HY-8 evaluates
this loss using a generally more accurate direct-step com-
putation that however assumes a prismatic (constant)
barrel geometry. A third effect lies, as in the inlet-control
cases, in the use of generic coefficients. For example, in
the case where both inlet and outlet are submerged,
the HEC-RAS bridge model uses an orifice (full-flow)
equation where a discharge coefficient must be speci-
fied beforehand and which does not model frictional
losses within the culvert barrel. For a sufficiently short
structure, whether the control is located at the inlet or
outlet is likely irrelevant from a practical point of view,
and so such an assumption should not affect much the
headwater prediction. Differences between the two
models would be expected to increase for longer and
‘‘rougher’’ structures where the water surface eleva-
tions change substantially within the structure. For
such a case, the HY-8 would evaluate a more appro-
priate effective flow-dependent discharge coefficient.
The HY-8 computation is limited not due to the free-
surface nature of the flow through the barrel, but
by the assumption that the barrel geometry does not
change.

2.3.3 Other Comments

Culvert hydraulics is complicated in involving num-
erous scenarios, and it may not be possible to formulate
simple but generally valid rules for the conditions under
which the predictions of HY-8 and HEC-RAS will
differ significantly. HY-8 emphasizes the distinction
between inlet and outlet control and the HEC-RAS
bridge model does not. In many cases, the HY-8
estimates for inlet and outlet control differ only slightly,
but even in such cases, the final HY-8 and the HEC-
RAS bridge model predictions may still differ. When
water surface (or hydraulic grade) slopes within and
outside the structure are not large, then significant dif-
ferences between the two modeling approaches would
be expected to be least likely. Thus, results for Type A
low flows, where the flow is everywhere decidedly
subcritical, are less likely to show large differences than
a Type B low flow, where the flow becomes critical

within the structure. A Type B low flow by itself how-
ever does not necessarily ensure a large difference. The
HY-8 approach is more detailed and more tailored to
a standard geometry, and so might be expected to be
more reliable. Its assumption that the higher energy
solution controls is however not necessarily correct,
though should be conservative. HY-8 does also neg-
lect velocity heads in the upstream and downstream
channels, which might lead to differences in headwater
predictions, but in typical design situations, these dif-
ferences are expected to be small, often yielding again
conservative estimates.

The distinction between inlet and outlet control for
culverts is not accounted for in the HEC-RAS bridge
model, but this may not be relevant for ‘‘short’’ struc-
tures. This raises the question as to what constitutes
a short structure. If the inlet flow directly affects the
flow at the outlet, then this condition would provide a
working definition of a short structure. This can be
interpreted as the inlet flow not being fully expanded
before the outlet is reached, and therefore the length of
a short structure might be expressed in terms of a small
multiple of the critical depth or the culvert rise or the
culvert span. Even for such short structures, differences
may still be found in the predictions of HY-8 and the
HEC-RAS bridge model if default generic coefficients
are used in the latter rather than the coefficients tailo-
red to standard geometries in the former. On the other
hand, for such short structures, differences may be
minimal for certain types of flows, e.g., Type A low flows.

There may also be flow features in short structures
that are not modeled well or at all by either HY-8 or
HEC-RAS. If the inlet flow strongly influences the
outlet flow because the flow has not yet fully expanded
at the outlet, then the flow within the structure should
be considered as rapidly varied, and neither HY-8 nor
HEC-RAS, both of which assume gradually varied flow
in their computation, is capable of dealing directly with
rapidly varying flows. In such models, these features are
typically handled by rating curves (e.g., the inlet con-
trol equations in HY-8 or the gated-flow model in
HEC-RAS, to be specified in Chapter 4.2), involving
empirical coefficients, which are more tailored in HY-8
and more generic in HEC-RAS.

In this work, HY-8 and conventional culvert hydra-
ulics will be for the most part used interchangeably.
It should however be kept in mind that HY-8 is only
one specific model, which makes some specific choices,
and other culvert hydraulics models could make other
choices that might require more effort but could also
result in better headwater predictions. An example of
such a choice is the use of polynomial model for inlet-
control conditions, which makes for practical conve-
nience and conservative estimates, but may not always
give the closest agreement with observations.

2.4 Summary

The elements of the conventional culvert hydraulics
model, especially but not solely as implemented in the
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HY-8 software, and the bridge hydraulics model, as
implemented in HEC-RAS, have been presented. The
similarities and the differences between the two types of
models have been highlighted, and it has been argued
that, while for general problems with non-standard
irregular geometries HEC-RAS does possess advan-
tages, for problems with culvert-like geometries (stan-
dard inlet and constant barrel geometry), culvert
hydraulics and HY-8 can provide simpler solutions
that may be equally reliable for headwater prediction as
HEC-RAS.

3. EXPERIMENTAL CONSIDERATIONS

3.1 Scaling and Similitude

While the aim of the study was not to simulate a
specific structure in the field, it is helpful to consider the
scaling of the laboratory model with respect to what
might be expected in the field. Because the hydraulic
problem mainly concerns the prediction of the head-
water, HW, which involves the free surface, it is argued
that the appropriate scaling is the Froude model law.
Thus, the Froude number, Fr, should be the same in the
model and the prototype, or

Frm~Frp, i:e:,
Vmffiffiffiffiffiffiffiffiffi
gLm

p ~
Vpffiffiffiffiffiffiffiffi
gLp

p ð3:1Þ

where V denotes a velocity scale, L a length scale, g the
acceleration due to gravity, and the subscripts, m and p,
refer to model and prototype quantities respectively.
This leads to a relationship between the velocity-scale
ratio, Vr5Vp/Vm, and the length-scale ratio, Lr5Lp/Lm,
that must be satisfied for dynamic similitude, namely,

Vr~
Vp

Vm

~
Lp

Lm

~
ffiffiffiffiffi
Lr

p
ð3:2Þ

ffiffiffiffiffiffiffir

As an example, if Lr is chosen as 16 (the laboratory
model has a geometry thaffiffiffiffit ffiis 1/16 in scale of the fieldp
dimensions), then Vr~ 16~4, so that to ensure the
same Fr in both model and prototype, velocities in the
model should be 1/4 of the field velocities.

In the same manner, the appropriate discharge-scale
ratio can be found as

Qr~
Qp

Qm

~
VpAp

VmAm

~
VpL2

p

VmL2
m

~
Lp

Lm

L2
p

L2
m

~
Lp

Lm

5=2

ð3:3Þ
ffiffiffiffiffiffiffir � �

so that a choice of Lr516 corresponds to Qr5165/25

1024, i.e., a flow of 1 cfs in the laboratory corresponds
to a flow of 1024 cfs in the field. Similarly, if a
Manning’s flow-resistance model is suitable, then a
Manning’s n scale ratio can also be determined as

nr~
np

nm

~
(R

2=3
h S

1=2
f =V )

p

(R
2=3
h S

1=2
f =V )

m

~L2=3
r (1)1=2L{1=2

r ~L1=6
r ð3:4Þ

For Lr516, the Manning’s n in the field would be
161/6 <1.6 times that in the laboratory.

The above scaling relationships may be illustrated by
obtaining culvert performance curves (using e.g., HY-8)
at the model scale and at the prototype scale, and then
relating the two curves via scaling relationships. The
results of two HY-8 simulations, at the prototype scale
(box culvert with span, 24 ft; rise, 8 ft; slope, 0.0004;
and Manning’s n, 0.018) and at the model scale (span,
1.5 ft; rise, 0.5 ft; slope, 0.0004; and Manning’s n of
0.011), are shown in Figure 3.1, assuming uniform flow
in rectangular tailwater channel of width (58 ft pro-
totype, 3.6 ft model), over a range of discharges from
0 to 3072 cfs (prototype) or 0 to 3 cfs (model). The scale
ratio is Lr516. These values correspond to ‘‘target’’
values for the experimental study (see following sec-
tion). By making use of the above scaling relationships,
the results for the model scale are seen to agree with the
results of the prototype scale. It is notable that over the
range of discharges the HY-8 results at both scales
switched from being outlet-controlled and open-channel
flow throughout at low discharges to inlet-controlled
and full flow at high discharges. Thus, the scaling
relationships apply despite qualitative changes in the
type of culvert flow. The above does not necessarily
imply that the results of the laboratory experiments will
scale in exactly the same manner, but, if performed at
sufficiently large scale so that scale effects are secon-
dary or negligible, it would be expected that the scaling
also applies to the experiments.

3.2 Experimental Issues, Design, and Equipment

3.2.1 Design and Specification of Laboratory Channel

The scale of a laboratory model is generally chosen
to be the largest that is practically feasible, i.e., within
the constraints imposed by space and cost, so as to
alleviate concerns about scale effects. Particularly for
a study of culvert-bridge models, which presumably
focuses on large-span structures (with spans greater
than 20 ft), it was desired to perform the experiments at
a larger scale than what was available at the beginning
of the project (a channel of total width 1.33 ft). A larger
scale channel however requires larger components
(such as pipes, pump, and flow meter) that are more
expensive and increase the ultimate cost of the system.

A sketch of the laboratory channel with the ‘‘long’’
culvert-like structure is given in Figure 3.2. A total
channel width 3.6 ft was decided on as a practical
compromise. This could readily accommodate a target
model span of 1.5 ft, with a reasonably realistic con-
traction (in width) ratio of 2.4. Though other length-
scale ratios could have been chosen, the design of the
laboratory channel used a ratio of Lr516 as a general
guideline. For Lr516, the corresponding prototype
dimensions would be a channel width of <58 ft and a
structure span of 24 ft, which would be in the range that
according to current INDOT policy would be modeled
as a bridge rather than as a culvert. For comparison, in
the laboratory experiments of French (1966), on which
were based the original box culvert coefficients and
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exponents in HDS-5-1985, the largest span was 1 ft, in
a 12-ft wide channel, while in the more recent study
of Jones, Kerenyi, and Stein (2007) on inlet geometry
effects on box culverts, the largest span was 2 ft, in an
8-ft wide channel.

The channel was constructed on a platform consist-
ing of a pair of 20-ft-long W10630 wide-flange I-beams,
supported by a downstream pivot point, and a pair of
worm gear machine screw jacks, each rated for 2-ton
capacity. The pivot + jack system allows the channel to
be tilted so that a streamwise slope can be simulated.
Although the jacking system is in place, it is not fully

operational due to concerns that, without any external
constraints, the load would not travel in a vertical
plane, resulting in undue stresses on the jacks. An
external stabilizer was originally designed to align the
travel, but due to time constraints and a greater
priority placed on low-slope applications, has not yet
been implemented.

With the base of length 20 ft, it was decided to have
the channel of approximately the same total length.
For the study of the ‘‘long’’ structure, this was divi-
ded into an 8-ft-long downstream channel, an 8-ft-
long culvert section, and an <3.5-ft-long upstream

Figure 3.1 Computational results using HY-8 for the culvert performance curve at the prototype scale (full line) and at the model
scale (crosses), with a scaling ratio of Lr516.

Figure 3.2 Sketch of laboratory channel (with the ‘‘long’’ structure): elevation view.
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channel/reservoir. With a rise of D50.5 ft, this implied
a length to rise ratio of 16, which was considered reason-
able. For comparison, the basic study of French (1966)
had a rise up to 1 ft and length of 46.5 ft, while Jones
et al. (2006) had a rise of 0.5 ft with a culvert length of
10.2 ft. For a scale ratio of Lr516, the long structure
would correspond to a 128-ft-long downstream channel
and culvert section, and a 64-ft-long upstream reach.
The upstream reservoir also contains the possibly
submerged supply pipe as well as a short flow strai-
ghtening section consisting of stacked 10-in long
1.25-in diameter thin-walled pipes, such that the
distance from the end of the flow-straightening pipes
to the culvert entrance is <1.3 ft. An additional
outlet box also acts as a reservoir of volume of <500
gal to maintain an appropriate supply to the pump.
A fast-drain facility was incorporated into the outlet
box to allow increasing the total volume of water in
the system that may be necessary at high discharges.
The T-slot framing system used for the channel
also served as linear railings, along which carriages
with measurement equipment could be conveniently
positioned. A vertical tailgate could be used to con-
trol the downstream flow, allowing the tailwater
elevation to be varied.

Except for the sides of the culvert, which were made
of transparent clear polycarbonate to allow viewing
of the culvert flow, the channel (including base and
sides) was fabricated of 3/4-in thick opaque high-
density polyethylene (HDPE), commercially known as
Seaboard. This material was chosen because its mois-
ture absorption is very low, and so unlike plywood it
does not delaminate or rot or warp under prolonged
exposure to water. Somewhat more costly than marine
plywood, but less costly than clear polycarbonate,
it can be worked in much the way as wood except
that special measures and sealants were necessary at
all joints to prevent leaks. The Seaboard surface is not
as smooth as Plexiglas, but rather has a slight rough-
ness. A discussion of the value of the Manning coeffi-
cient, i.e., the Manning’s n, for this surface is given in
Appendix A, where an estimate, n50.011, was obtai-
ned for the Seaboard surface. For some experiments,
roughness was added artificially by placing on the
channel bed an aluminum open-celled expanded metal
grate-like sheet (see Figure A.3), with a total thickness
of 0.3-in. The Manning’s n with the roughened bed was
found to vary with depth, but an intermediate value
of n50.018 was used in modeling the flows with the
roughness in place. These estimates of n have substantial
uncertainty, perhaps as much as 15%, associated with
them, being based on a limited number of data points
and small differences in water surface elevation.

3.2.2 Flow System Components

Based on preliminary estimates from HY-8 modeling
of the laboratory model with a channel width of 3.6 ft
and culvert span of 1.5 ft, it was decided that a range of
laboratory discharges of 0 to 3 cfs would be adequate

for the purposes of the study. If Lr516 is assumed, then

this would imply a discharge-scale ratio of Qr~L5=2
r ~

165=2~1024, so that the discharge range in the field
would be 0 to <3000 cfs. Although the upper limit of
3000 cfs may be uncommon for typical culvert appli-
cations, sites with estimated bankfull widths of <60 ft
and 50-year discharges in excess of 3000 cfs can be
found in Indiana. Whether such sites would be suitable
for large-culvert applications may be debated, but that
such sites do exist does motivate the range of flows to
be studied.

A practical constraint on the choice of pump was
that the power draw at design flow was required be less
than 20 hp in order for avoid costly electrical upgrades.
A pump (PACO 60951LC) rated at 1500 gpm (3.34 cfs)
at a head of 36.4 ft with a required power of 19.5 hp
was ultimately selected. This pump had an 8-in inlet
diameter and a 6-in outlet diameter, and so a com-
bination of 8-in and 10-in diameter piping was used in
the inlet piping, and a combination of 6-in and 8-in
diameter piping was used in the outlet piping. From
experience in operating the flow system, it is believed
that the maximum discharge in the channel could
exceed 1800 gpm (<4 cfs), but other factors such as the
total storage volume might place a limit on achievable
discharge. To control the discharge, the pump was
paired with a programmable variable frequency drive
(Baldor ACB530-U1-075A), by means of which the
pump frequency and hence its discharge could be varied
precisely.

Due to the mainly vertical pipe layout and also to
pipe sizing, it was observed that the pump performance
needed to be described by two curves. With the valve
fully open, from startup, the pump discharge at low
flow rates (,900 rpm pump frequency which resulted in
a flow <750 gpm or <1.6 cfs), the outlet pipe system
was not flowing full. The pump was therefore simply
lifting the water in the vertical pipe to an elevation from
which it flowed into the channel due to gravity. When
the pipe does flow full, discharges could increase quite
dramatically for small changes in pump frequency, with
flow rates exceeding 1000 gpm (2.2 cfs) at pump
frequency of 950 rpm. Hysteresis in the pump perfor-
mance was also observed in that the pump head-
discharge relationship differed depending on whether
the pump frequency is being increased from startup or
being decreased from a level associated with full flow.

An electromagnetic flow meter (Badger, M2000),
installed <4 ft downstream of the pump outlet in the 6-
in diameter pipe (see Figure 3.2), was used to measure
discharge. It has a manufacturer specified accuracy of
0.25% of rate for measured velocities greater than 1.6 ft/s
(i.e., discharges greater than 0.3 cfs). For the present
applications, which are restricted to steady flows, small
instantaneous fluctuations in discharge are not relevant,
and so the flow meter time constant (damping factor in
the flow meter manual) was set to 10 seconds, thus
averaging out very-short-term flow rate fluctuations.

Aside from the discharge, the main measurement to
be made was the water surface elevation, and specifically
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the headwater. This was performed with a digital point
(depth) gage (Mahr Federal, MARCAL 30 EWR
4126702), with a manufacturer-specified resolution of
0.0005-in and accuracy of 0.002-in. In practice, in the
presence of surface waves under flow conditions, the
measurement error or uncertainty is determined more
by the measurement process of determining an ave-
rage water surface elevation. In some cases, measure-
ments were taken directly in the flow, and the average
water surface at a point was identified for the pur-
poses of determining the water surface elevation as
being located where the tip of the point gage was
visually submerged for approximately half of the
time. At some points, this was very difficult to deter-
mine with any precision. This was the case with the
headwater at higher discharges. When this was noted,
three taps were installed on the channel bed, and were
attached via tubing to stilling wells, so that a more
reliable estimate of the mean water surface elevation
could be obtained. One tap, approximately 1.25 ft
upstream from the culvert inlet, was used for the
headwater, and the other two allowed monitoring of
the water surface in the long culvert when the culvert
cover was in place. At the highest headwater levels,
the range of the digital point gage was exceeded, and
so the stilling well levels were in those situations
measured with a simple rule.

3.3 Design of Experiments

The primary results desired of the laboratory expe-
riments were (steady-state) performance curves of the
model structure corresponding to the various flow types
described in Chapter 2.1, as these were to be compared
with predictions of the culvert model HY-8 and the
bridge model in HEC-RAS. The performance curve
relates the headwater, HW, to the discharge, Q, for a
given structure in a given channel. There are several
common standard culvert geometries, but it was con-
sidered sufficient to study a single geometry, namely a
rectangular or box culvert, of span, Bc51.5 ft, in order
to answer the basic question of whether a culvert model
(such as HY-8) can successfully predict the performance
curve of a relatively short structure or whether in such
cases a bridge model (such as in HEC-RAS) is needed.
For this reason, the effect of common inlet geometry
features such as corner fillets, chamfers, bevels, or wing-
walls were not studied; only a single 90u square head-
wall inlet was considered. Further, only a single rise,
D50.5 ft, was used, but low flows (where the culvert top
plays no role) were studied with a culvert top absent.

The experiments were designed to investigate four
effects:

N structure length—this is the primary aspect of interest,

because the relative streamwise length is in some accounts

given as the technical basis for conventional culvert

hydraulics not being applicable to large-span structures

N flow resistance or roughness—large-span structures often

take the form of three-sided or bottomless culverts with

a natural and therefore rougher bottom, so the effect of

roughness on headwater prediction becomes relevant

N the presence or absence of culvert cover or crown—while

large-span structures may not always be designed to
operate under partially or wholly full-flow conditions at
design flow, the prediction of the headwater under such

conditions remains an important aspect of any model

N tailwater level—in the most commonly occurring situa-
tion where large-span or more bridge-like structures
might be considered, the flow within and upstream of the

structure will be influenced by the tailwater level, which
therefore needs study

To cover these four effects, sixteen (524) series of
experiments were performed, each effect being studied
with at least two examples (e.g., a long and a short
structure, a smooth and a rough bed, etc.). For each
series, the performance curve was obtained by varying
the discharge and measuring the corresponding head-
water. It was also desired to cover the range of diffe-
rent flow regimes discussed in Chapter 2.1, namely the
Types A and B low flows, and the gated-flow and
orifice-flow high flows. The low-flow regime where a
free-surface flow prevailed through the channel-struc-
ture system was mainly generated with the culvert cover
absent, but some series with the culvert cover in place
also had low-flow cases at smaller discharges. Most
Type A flows occurred when the downstream gate
was set sufficiently low as to generate a sufficiently
high tailwater level, while most Type B flows occur-
red with the downstream gate set high enough that it
exerted no control, such that the tailwater was low
and had negligible influence on the flow within the
structure and the headwater. The high flows were
obtained with the culvert cover in place, with the
gated flow resulting from a high gate (hence with low
tailwater), and the orifice flow from a low gate (hence
with high tailwater).

A main choice was the structure length, Lc. The
length of the ‘‘long’’ structure was largely dictated by
the overall size of the experimental facility. The span,
Bc, was chosen so that, for the long structure, the flow
at the structure outlet was not strongly or directly
influenced by the flow at the structure inlet, i.e., the
flow had expanded fully and become relatively uniform
over the outlet cross-section. The length to rise ratio,
Lc/D516, and the length to span ratio, Lc/Bc55.3,
suggest that vertical uniformity is likely achieved, but
lateral uniformity may be marginal. Some water-
surface-profile and velocity measurements at the outlet
did support the flow at the outlet of the long structure
being relatively uniform. The length of the ‘‘short’’
structure was chosen to be reasonably realistic at the
target prototype scale, and to be such that Lc/D and Lc/
Bc were small enough that the outlet flow was definitely
influenced by the inlet flow, over most of the discharge
range. The chosen ‘‘short’’ length of Lc52.1 ft yielded a
prototype length of 33 ft (assuming a scale ratio of 16),
and Lc/D54.2 and Lc/Bc51.4 should ensure that the
inlet flow had not yet recovered fully at the outlet. For
experiments with the ‘‘short’’ structure, the location of
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the inlet was retained as for the ‘‘long’’ structure, so that
the length of the downstream channel increased to <14 ft.

The range of experimental conditions covered in the
study is summarized in Table 3.1 (where yt is the tail-
water depth, and ycc is the critical depth in the
structure). The extreme values in Table 3.1 for some
parameters may be rare in typical practice, but were
nevertheless included in the study as tests of model
capability.

3.4 Experimental Procedure

The common experimental procedure involved:

N The downstream storage tank or outlet box was filled,
and if necessary, the pump casing was bled to remove air
pockets that might adversely affect the pump perfor-
mance.

N The pump was started, and the pump speed slowly
increased until a desired starting discharge, read from the
flow meter, was achieved. Some time period was neces-
sary before a suitably steady flow was obtained. Even
at ‘‘steady’’ flow, a variation of ¡1% to 2% in discharge
was observed.

N Water-surface level measurements were then taken.
These could be directly in the channel and/or culvert,
or could also be in the stilling-well tubes. In limited cases,
these might be more extensive profiles, but most often,
measurements were obtained only at the headwater still-
ing well. Most level measurements were taken with the
Mahr electronic depth gage, but if this could be not used
due to scale limitations, then a simple rule was used. For
cases, in which the tailwater played an important role,
the tailwater depth needed to be measured and was taken
at a distance of <4 ft from the culvert outlet (also appro-
ximately the same distance to the end of the downstream
channel).

N The process was repeated until the entire range of desired
discharges was covered. Two cautionary points should be
noted:

– At the higher discharges, attention to the water level in
the downstream storage tank was needed to ensure
that it was sufficiently above the inlet to the supply
pipe to the pump. If the level was considered too low,
the level in the tank was ‘‘topped’’ up by filling with
additional water as needed. If such topping up was
performed, then care should be exercised that water
would be appropriately drained when the discharge
was reduced in order to avoid the tank storage capa-
city being exceeded.

– As noted before in Chapter 3.2.2, due to the pipe
system not always flowing full, pump discharge can
change quite dramatically in certain discharge ranges
in the transition to full-pipe flow. In these ranges, care
needs to be exercised in increasing or decreasing pump
speed to avoid undesirable effects.

3.5 Summary

In this chapter, the Froude number model law was
stated, and the modeling implications outlined. The
experimental facility, which was built with this study in
mind, was then described. The scope of the study and
the consequent range of experimental conditions cove-
red were then presented, followed by details of the expe-
rimental procedure.

4. EXPERIMENTAL AND COMPUTATIONAL
RESULTS

4.1 Organization of Results

The experimental results are presented in this chapter
together with the computational results using HY-8 and
the HEC-RAS bridge models. Because the main issue
of concern is the effect of structure length on model-
ing predictions, the results of the different cases are
considered in pairs, with each pair characterized by the
same conditions and differing only in the structure
length. Eight pairs of experiment series, examining in
turn, the effects of bed roughness, the constraint of a
culvert top or cover, and the presence of high tailwater,
will be discussed. For convenience in referencing, each
experiment series is designated by a six-character label,
with the first letter indicating a long (L) or short (S)
structure, the second letter a smooth (S) or a rough (R)
bed, the next two characters the absence (C0) or pre-
sence (C1) of a culvert cover, and the final two char-
acters the absence (G0) or presence (G1) of a tailwater
(i.e., downstream gate) effect. For example, the series
LRC0G1 refers to experiments with the long (8-ft)
structure, with a rough bed, no culvert cover (C0), and
a downstream gate (G1) low enough as to cause tail-
water effects under most conditions. For certain cases
(Type A low flows according to the HEC-RAS bridge-
flow classification), more than one series of experiments
were conducted; in such cases, an alphabetic suffix (e.g.,
A and B) is added. After presentation of individual
performance curves with a comparison of model pre-
dictions and observations in Section 4.3, the statistics of
model performance are discussed in Section 4.4.

4.2 Computational Model Assumptions

The results to be presented are comparisons of the
experimental culvert performance curves with HY-8
and HEC-RAS predictions. Except where noted, in the
HEC-RAS bridge modeling, default options and values
of coefficients were used. In the HEC-RAS results, the
total head, i.e., including the velocity head, is used in all
comparisons of headwater, and this was taken at an

TABLE 3.1
Range of experimental parameters

Lc / Bc Lc / D n HW / D HW / ycc yt / ycc yt / D

1.4, 5.3 4.2, 16 0.011, 0.018 0.5–2.5 1.6–5.6 0.5–3.1 0.2–2
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upstream section where the flow is assumed to be
fully expanded. Default options and coefficient values
were taken for the HEC-RAS bridge models. Ineffec-
tive flow areas were applied according to manual
(Brunner, 2016) guidelines, with contraction coeffi-
cient just upstream of the structure and expansion
coefficient just downstream of the structure taken to
be 0.3 and 0.5. The main non-default HEC-RAS option
taken was the specification of the internal bridge
sections to be the same as the culvert span and rise,
such that the barrel geometry is the same as the inlet
and outlet geometry. Each series of experiments are
discussed in turn. For the HY-8 simulations, a concrete
box culvert with a Manning’s n of 0.011 or 0.018 (as in
the HEC-RAS simulations) was specified. In cases
where the tailwater had no effect on the upstream flow,
a very small constant tailwater was specified; otherwise,
the measured tailwater (at a section <4 ft downstream
of the structure outlet) was specified. All HY-8 compu-
tations were performed with version 7.5, but checks
with version 7.3 showed no difference in results. HEC-
RAS computations were all performed with version 4.1,
using a mixed-flow regime (critical flow or specified
downstream-depth boundary condition) in order to
permit supercritical solutions.

In addition to the predictions from HY-8, curves
corresponding to the traditional HDS-5 inlet-control
equations for unsubmerged and submerged conditions
will also be used as reference. For the case of a box cul-
vert, the standard inlet geometry most closely corre-
sponding to the laboratory model is that with a 90u
headwall and L-in chamfers (Chart #10, Nomograph
scale 1), though the model was not chamfered. Under
the unsubmerged-inlet condition, the weir (or critical-
flow) equation for the headwater, HWICc, is related to
the discharge, Q, (in U.S. customary units) by

HWICc~0:515(Q=Bc)
2=3 ð4:1Þ

where Bc51.5 ft is the structure span. For the sub-
merged-inlet condition, the gated-flow equation for the
headwater, HWICg, is given in U.S. customary units by

HWICg~0:0375
Q

BcD

2

z0:79D; ð4:2Þ
� �

where the slope term has been neglected, and D is the
culvert rise. For comparison with the HEC-RAS gated-
flow, it is convenient to cast Eq. 4.2 in terms of a gated-
flow discharge coefficient, Cd,gate, equivalent to that in
HEC-RAS. This is found to be (in U.S. customary units)

Cd,gate~
HW{0:79D

0:0375(2g)(HW{0:5D)
ð4:3Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffis

For cases of high tailwater, with both inlet and outlet
submerged, HEC-RAS applies an orifice model with a
different discharge coefficient, Cd,or, such that

Q~Cd,orAc 2gDH ð4:4Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffip

where Ac5BcD is the full structure area, and DH is the
difference in total heads between the inlet and the outlet.
In the following, DH5HW–yt, as the channel slope is
negligible (yt being the tailwater depth). In terms of
conventional culvert analysis, Cd,or, can be expressed as

Cd,ori~
1

KL,entzKL,exitzKL,c

ð4:5Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffis

KL,ent and KL,exit are local loss coefficients (with values
of 0.5 and 1� �assumed for the present cases) and KL,c~

4=3ð Þc=
2

n cM 2g Lc=R represents continuous losses duehc

to boundary friction within the culvert (here nc, Lc,
and Rh,c are the Manning’s n, the length, and the
hydraulic radius of the full-flow culvert, and cM is the
Manning’s conversion constant, 1.49 in U.S. custo-
mary units). The default HEC-RAS value of 0.8 for
Cd,or maypffiffiffiffiffiffiffiffiffiffibe viffi ewed as neglecting KL,c in which case

Cd,or& 1=1:5~0:82.

4.3 Performance Curves

In the following, the culvert performance curves are
plotted, with the actual measured values of headwater,
HWm, given on the left axis, while a prototype head-
water, HWp, assuming a scale ratio of 16, is given on
the right axis. Similarly, the corresponding measured
model discharges, Qm, are given on the lower axis, while
the scaled prototype discharges, Qp, are given on the
upper axis.

4.3.1 LSC0G0 and SSC0G0: Type B Low Flows
(Smooth Bed, No Cover, and Gate High)

This pair of experiment series was performed without
a culvert cover, and thus simulated flow conditions
where the water surface within the structure does not
reach the culvert crown (in the HEC-RAS classifica-
tion, low flows). Further, the flow occurred with the
gate high, without any downstream control, such that,
despite the almost zero slope, the flow in the down-
stream channel was supercritical for all discharges. In
the HEC-RAS bridge modeling classification, all flows
in this series were Type B low flows. Figure 4.1 directly
compares HWm for the long and the short structures,
and these are seen to align very well. For these conditions,
the effects of length are negligible, which is also be inter-
preted as an unsubmerged inlet control prevailing, such
that structure features downstream of the inlet have
negligible effect on HWm. While flow resistance may
eventually become relevant for much longer or much
rougher-bed structures, it seems justified to infer that
the HWm for even shorter structures under similar
conditions would vary as in Figure 4.1. Thus, a model
that predicts well the HWm for the longer structure
should also predict well for much shorter structures.

In Figure 4.2, each of the series is plotted with the
model predictions of HY-8 and HEC-RAS, toge-
ther with a curve representing the traditional HDS-5
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(unsubmerged) inlet-control equation, i.e, Eq. 4.1. The
observations are situated between the HY-8 and the
HEC-RAS predictions. At lower discharges, the pre-
diction of HY-8 agree better with the measurements
than those of HEC-RAS, but at higher discharges the

opposite is the case. Much of the discrepancy between
the HY-8 predictions and the measurements seems to
be due to the polynomial model fit adopted in HY-8, as
the agreement is noticeably better, especially at higher
discharges, with the reference curve for the traditional

Figure 4.1 Comparison of measured headwater for long and short structures over smooth beds, no cover, and gate high.

Figure 4.2 Comparison of measurements and predictions of different models (HY-8, HEC-RAS bridge, and HDS-5 inlet-control
equations) for smooth-bed, no-cover, gate-high conditions, (a) long structure, (b) short structure.
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HDS-5 weir equation than with the HY-8 predictions.
Thus, discrepancies with HY-8 should not be inter-
preted as stemming necessarily from culvert modeling
in general, but rather from a specific culvert model. The
better agreement with HEC-RAS at higher discharges
may also be explained from this perspective. For a Type
B flow, HEC-RAS, by default, assumes critical flow at
the inlet, and, like Eq. 4.1 but unlike the polynomial fit
of HY-8, does not involve the culvert rise.

4.3.2 LRC0G0 and SRC0G0: Type B Low Flows (Rough
Bed, No Cover, and Gate High)

These two series of experiments are similar to the
preceding, except that a roughened bed was installed,
both inside and outside of the structure. A direct com-
parison between the results for the long and the short
structures in Figure 4.3 indicates only a slight though
consistent effect of roughness on the culvert perfor-
mance. The longer structure exhibits a slight increase in
HWm as might be expected due to the increased flow
resistance. The slight effect of the increased roughness
does suggest that, especially for the higher discharges,
when frictional losses become more important, the
hydraulic control has passed from the inlet as in the
preceding series to the outlet.

The predictions of the different models are plotted
in Figure 4.4. The effect of the rough bed is clearly seen
in that both the HY-8 predictions and the measure-
ments of HWm tend to lie above the reference inlet-
control curve (Eq. 4.1), which might be taken as more

applicable to the smooth-bed case, as was seen in
Section 4.3.1. The difference from the reference curve
is also greater in the case of the longer structure due
to the greater effect of flow resistance. Thus, although
there is a small effect of flow resistance within the
short structure and hence is outlet-controlled, the
resulting HWm in that case differs little from inlet-
control reference curve. HEC-RAS consistently under-
predicts HWm, even for the short structure (com-
pare the short-structure results in Figure 4.2b and
Figure 4.4b). As was noted above, for Type B flows,
HEC-RAS does not distinguish inlet and outlet con-
trol, and by default assumes inlet control with critical
flow at the inlet, and thus does not take into account flow
resistance within the structure. HY-8 does include
flow resistance, and hence provides superior predic-
tions, with the agreement improving with the longer
structure.

4.3.3 LSC1G0 and SSC1G0: High Flows (Smooth Bed,
with Cover, and Gate High)

According to the HEC-RAS classification of bridge
flows, high flows refer to conditions where the water
surface touches the structure low chord. In these two
series of experiments, the smaller discharges are strictly
speaking not high flows in the HEC-RAS sense, but
they were performed to provide a context for the high
flows. Further, the two series were also characterized by
a supercritical downstream flow, and so the hydrau-
lic control was always located within the structure.

Figure 4.3 Comparison of measured headwater for long and short structures over rough beds, no cover, and gate high.
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The limited results of Figure 4.5 do not give a definitive
picture of the effect of length on high flows, as only two
points for the long structure actually submerged the
inlet. The available high-flow data do not support a

strong effect of structure length, and hence would be
consistent with inlet control, which under submerged
conditions would imply gated flow. For the smaller
(unsubmerged-inlet) discharges, the results are consistent

Figure 4.4 Comparison of measurements and predictions of different models (HY-8, HEC-RAS bridge, and HDS-5 inlet-control
equations) for rough-bed, no-cover, gate-high conditions, (a) long structure, (b) short structure.

Figure 4.5 Comparison of measured headwater for long and short structures over smooth beds, with cover, and gate high.
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with those previously seen for Type B flows that are inlet
controlled (see the comparisons in Figure 4.6 with the
reference inlet-control curves).

Model predictions are compared in Figure 4.6. Two
predictions are given for the HEC-RAS bridge model,
namely the default approach based on the energy equa-
tion, and the optional pressure-flow approach based
on a gated-flow equation with a discharge coefficient,
Cd,gate, internally determined by default. While the
HEC-RAS predictions for low flows are adequate if
underestimated, those for high flows are dubious since
substantial disagreement with the measurements is seen
for both energy- and pressure-based predictions. The
default HEC-RAS energy-equation model still predicts
HWm close to (actually below) the critical-flow values
more appropriate for the critical-flow case without a
cover. The overestimating behavior of the HEC-RAS
pressure model is traced to a low value internally deter-
mined for Cd,gate. The HEC-RAS manual (Brunner,
2016) shows Cd,gate asymptoting to a maximum value of
0.5, but the corresponding HY-8 coefficient (derived
from Eq. 4.2 and evaluated as Eq. 4.3) has a value of
0.58 for HW/D52. As measurements indicate that the
actual HWm for the short structure are even lower than
the HY-8 predictions, this suggests that the actual
Cd,gate is larger still than the HY-8 Cd,gate. It should
nevertheless be noted that HW/D52 would be extreme
and rather rare in the usual bridge context, but may not
be as rare in the usual culvert context. It must also be
highlighted that the HEC-RAS bridge model does not
determine which of the two solutions is to chosen, and
the engineer must select the non-default option to
obtain the alternate estimate.

In marked contrast, the HY-8 predictions track the
measurement over the entire range of low and high
flows, as HY-8 is capable of changing from outlet-
control to inlet control, or from unsubmerged-inlet to
submerged-inlet conditions. The agreement with mea-
surements is however noticeably better for the longer
structure. Some of the discrepancy, especially for the
short structure, is attributed as earlier noted to the
polynomial transition model as the traditional critical-
flow Eq. 4.1 yields better agreement. For the short
structure, the data in Figure 4.6 also suggest Eq. 4.1
may be applicable at least for smooth beds, to higher
values of Q/(AcD

1/2), Ac5BcD being the full culvert
area, e.g., 4.5 (in U.S. customary units) than the value
3.5 usually recommended (HDS-5-2012).

4.3.4 LRC1G0 and SRC1G0: High Flows (Rough Bed,
with Cover, and Gate High)

These two cases differ from the preceding two only in
that a rough bed was installed. The results of Figure 4.7
for the high flows (with inlet submerged) support the
inference made earlier based on the more limited data
of Figure 4.5 that the effect of structure length on HWm

in a gated-flow situation is negligible. Moreover, the
effect of roughness is slight but consistent particularly
at the smaller discharges. Under high-flow conditions,
the results for long and short structures with rough beds
are indistinguishable. Thus, in such a case, if a model
predicts HWm well for the long structure, it should
perform equally well for the short structure.

The qualitative behavior of the various model pre-
dictions, compared in Figure 4.8, is the same as seen

Figure 4.6 Comparison of measurements and predictions of different models (HY-8, HEC-RAS energy and gate, and HDS-5
inlet-control equations—the bottom curve is the unsubmerged-inlet model, Eq. 4.1, while the top curve is the submerged-inlet
model, Eq. 4.2) for smooth-bed, with-cover, gate-high conditions, (a) long structure, (b) short structure.
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previously in Figure 4.6 for the comparable smooth-bed
case. A consistent effect of roughness is however seen in
that the observed HWm are generally higher than
reference curves (Eq. 4.1 and Eq. 4.2). It is noted that,

for the short structure, HY-8 determines for all dis-
charges an outlet control, with however predictions of
HWm identical to those assuming inlet control. On the
other hand, for the long structure, HY-8 predicts outlet

Figure 4.7 Comparison of measured headwater for long and short structures over rough beds, with cover, and gate high.

Figure 4.8 Comparison of measurements and predictions of different models (HY-8, HEC-RAS energy and gate, and HDS-5
inlet-control equations—the bottom curve is the unsubmerged-inlet model, Eq. 4.1, while the top curve is the submerged-inlet
model, Eq. 4.2) for rough-bed, with-cover, gate-high conditions, (a) long structure, (b) short structure.
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control for the lower discharges, but inlet control for
the higher discharges. Unlike the comparable smooth-
bed case (SSC1G0), the applicability of Eq. 4.1 seems
more restricted.

4.3.5 LSC0G1 and SSC0G1: Type A Low Flows
(Smooth Bed, No Cover, and Gate Low)

According to the HEC-RAS classification of bridge
flows, Type A low flows refer to conditions where the
flow is everywhere (upstream, within, and downstream
the structure), and, to distinguish it from Type B low
flows, the tailwater downstream of the structure is assu-
med to exert hydraulic control. In the following series
of experiments, the imposed tailwater was generally
(i.e., all except possibly the lowest discharges) high,
which is meant here as a level exceeding the critical
depth in the culvert, and hence was expected to
influence the resulting headwater. A high tailwater in
this sense does not by itself guarantee tailwater con-
trol of HWm.

A comparison of two series of experiments involving
the short structure with a single series involving the
long structure is shown in Figure 4.9a in dimensional
form as previously done, but also in dimensionless form
in Figure 4.9b. The reference inlet-control curve from
Eq. 4.1 has also been included in Figure 4.9a. The two
series involving the short structure were performed with
the downstream gate at two different positions, thereby
generating two different tailwater conditions. At suffi-
ciently low tailwater conditions, even if the tailwater
was high in the sense of exceeding the critical depth in

the culvert, all of the observations are seen to start
from the inlet-control state (represented by the refe-
rence curve), and deviate from this state only for
sufficiently high tailwater. This is more clearly seen in
the dimensionless representation (Figure 4.9b), which
plots the headwater normalized by its inlet control
value against the ratio of the tailwater to the culvert
critical depth, i.e., yt/yc. In the latter coordinates, the
long-structure results are represented essentially by a
single point, while the short-structure results, which
plot as two distinct curves in Figure 4.9a, plot as a
single curve in Figure 4.9b. The straight-line in Figure
4.9b ensures that a change in the tailwater yt implies an

,equal change in HWm for large yt/yc. For yt/yc , 1.6,
Figure 4.9b indicates that HWm/HWICc <1 or HWm

retains it inlet-control value despite the high tailwater
level.

The predictions of the various models are compared
in Figure 4.10. In the absence of a cover, only a single
prediction is given for the HEC-RAS bridge model. For
the long structure, the HEC-RAS predictions are closer
to the measurements than the HY-8 predictions. The
problematic HY-8 performance stems primarily from
the incorrect conclusion that outlet control prevails.
The measurements in fact agree very well with the inlet-
control reference curve. Indeed, the rather unexpected
situation arises that HY-8 performs better for the short
structure than for the long structure, even though for
both long and short structures HY-8 predicts outlet
control. This may be explained by the decreased effect
of flow resistance on the HY-8 predictions for the short
structure.

Figure 4.9 Comparison of measured headwater for a single series involving a long structure and two series involving the short
structures over smooth beds, no cover, and gate low enough to generate mostly high tailwater conditions, in (a) dimensional, and
(b) dimensionless coordinates.

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2018/14 17



4.3.6 LRC0G1 and SRC0G1: Type A Low Flows
(Rough Bed, No Cover, and Gate Low)

These two cases differ from the preceding two only in
that a rough bed was installed, and the results are hence
presented in Figure 4.11 and Figure 4.12 in the same
manner. The general qualitative behavior is similar to
that seen previously for the corresponding smooth-bed
case (see Figure 4.9 and Figure 4.10), with the effect of
roughness appearing mainly in a slight upward shift of
HWm due to the increased flow resistance, especially
noticeable at smaller discharges. As seen in previous
figures, at the smallest discharges, when the effect of
the tailwater is small, the effect of a rough bed favors
HY-8, especially for the long structure. At larger dis-
charges as the tailwater effect dominates over the
roughness effect, the superiority of HY-8 diminishes,
and particularly for the short structure, measured HWm

agrees more closely with the HEC-RAS predictions.

4.3.7 LSC1G1 and SSC1G1: High Submerged-Outlet
Flows (Smooth Bed, with Cover, and Gate Low)

In these cases, the downstream gate was set low so
that there was in general a strong tailwater effect, and,
with a cover in place, at the largest discharges, both
structure inlet and outlet were submerged. A compar-
ison of HWm for the long and the short structures
over the range of discharges is given in Figure 4.13a.
A difficulty in this plot is that it gives no indication
of the tailwater conditions, and while the results
seem to match, this is because the tailwater conditions
were similar. More insight is obtained in a dimension-
less representation in which an ‘‘orifice’’ discharge

coefficient, Cd,or, evaluated from Eq. 4.4, is plotted
against the relative tailwater depth, yt/D, as in Figure
4.13b, so that when the outlet is submerged, yt/D.1,
is immediately evident. For yt/D.1, corresponding to

,Qm . 1.4 cfs in Figure 4.13a, for both long and short
structures, Figure 4.13b shows Cd,ori becoming approxi-
mately constant at the same value of 0.8 as the HEC-
RAS default value for the long structure, but consistently
above that value for the short structure. The additional
line, Cd,or5yt/D, describes an ideal case without losses,
and so provides an upper bound, that is especially
useful for interpreting the results in the unsubmerged-
outlet range, yt/D,1.

Model predictions are shown in Figure 4.14. For
the discharges with outlet submerged, the predictions
of both HY-8 and the HEC-RAS orifice model are
virtually indistinguishable. This is expected as the
initial discussion of Cd,or makes clear that the HEC-
RAS orifice model with its default value of Cd,or is
equivalent to the HY-8 model when the effects of
boundary friction within the structure is small or negli-
gible, as they are for the short structure (with a smooth
bed). For the long structure, a slight divergence of the
predictions of HY-8 and HEC-RAS is seen, attribu-
table to the greater losses within the long structure.
Both models however perform well for submerged-
outlet conditions, with the HEC-RAS orifice model
doing especially well in the case of the long structure,
though this may be somewhat fortuitous as the losses
were such that, as seen in Figure 4.13b, Cd,or <0.8, the
default value of the HEC-RAS orifice model. It should
be emphasized that the default energy model sig-
nificantly underestimates HWm for submerged-outlet
conditions.

Figure 4.10 Comparison of measurements and predictions of different models (HY-8, HEC-RAS energy, and HDS-5 inlet-
control equations Eq. 4.1) for smooth-bed, no-cover, gate-low conditions, (a) long structure, (b) short structure.
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4.3.8 LRC1G1 and SRC1G1: High Submerged-Outlet
Flows (Rough Bed, with Cover, and Gate Low)

These series differed from the preceding only in that a
rough bed was installed, and so the main focus concerns
the effect of roughness on submerged-outlet behavior.

An additional series with the short structure was per-
formed to illustrate the effect of differing tailwater
conditions (through setting the downstream gate at
different levels). Thus, in Figure 4.15a, the two series
for the same short structure but with differing tail-
water condition are clearly distinct; for the A series,

Figure 4.11 Comparison of measured headwater for a single series involving a long structure and two series involving the short
structures over rough beds, no cover, and gate low enough to generate mostly high tailwater conditions, in (a) dimensional, and (b)
dimensionless coordinates.

Figure 4.12 Comparison of measurements and predictions of different models (HY-8, HEC-RAS energy, and HDS-5 inlet-
control equation, Eq. 4.1) for rough-bed, no-cover, gate-low conditions, (a) long structure, (b) short structure.
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,the outlet is submerged for Qm . 1 cfs, while for the
,B series, the outlet is submerged for Qm . 1.6 cfs.

Again, the dimensionless plot of Cd,or vs yt/D is more
useful, as, in these coordinates, the results for the
two series with the short structure collapse onto argu-
ably a single curve. Whereas in the preceding smooth-
bed case, the value of Cd,or for the short structure

was <1 under submerged-outlet conditions (yt/D.1),
for the rough-bed short-structure case, the increa-
sed losses has reduced Cd,or to <0.8, which is the
default value in the HEC-RAS orifice model. On
the other hand, for the rough-bed long-structure
case, for the same reason, Cd,or is further reduced
to <0.7.

Figure 4.13 Comparison of measured headwater for a long structure and for a short structure over smooth beds, with a cover,
and gate low enough to generate high tailwater conditions, in (a) dimensional, and (b) dimensionless coordinates.

Figure 4.14 Comparison of measurements and predictions of different models (HY-8, HEC-RAS energy, and HDS-5 inlet-
control equation, Eq. 4.1) for smooth-bed, with-cover, gate-low conditions, (a) long structure, (b) short structure.
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As might be inferred from the values of Cd,or in
Figure 4.15b, both the HY-8 and the HEC-RAS orifice
models, and to a lesser extent, the HEC-RAS energy
model, perform well for the two rough-bed short-structure
series (Figure 4.16b). On the other hand, that the value of
Cd,or asymptotes to a value of <0.7 rather than 0.8 for

the rough-bed long-structure case implies that the per-
formance of the HEC-RAS orifice model deteriorates
noticeably (Figure 4.16a) and the HEC-RAS energy
model even more so, but the HY-8 predictions by
contrast still agree quite well with the measurements as
they account better for the losses within the structure.

Figure 4.15 Comparison of measured headwater for a single series involving the long structure and for two series involving the
short structure over rough beds, with a cover, and gate low enough to generate high tailwater conditions, in (a) dimensional, and
(b) dimensionless coordinates.

Figure 4.16 Comparison of measurements and predictions of different models (HY-8, HEC-RAS energy, and HDS-5 inlet-
control equation, Eq. 4.1) for rough-bed, with-cover, gate-low conditions, (a) long structure, (b) short structure.
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4.4 Model Performance Statistics

In the preceding section, the results of the individual
series were presented, and the performance of the
different models in predicting the headwater, HWm,
was assessed for each series. In this section, an overall
assessment of model performance is made. A single
overall figure of merit would however be too simplistic
as it would lump together quite different flow regimes.
It is preferred therefore to examine the performance
of the models for different broad classes of flows.
The chosen classes correspond approximately, but
are not necessarily identical, to the HEC-RAS classi-
fication, and hence are labeled differently. They are
defined as

N low flows: those cases with no cover or in cases where a
cover was in place where neither the inlet nor the outlet
was submerged

– Type A*: those low-flow cases with a high tailwater,
i.e., a tailwater depth exceeding critical depth within
the structure (yt/ycc.1)

– Type B*: those low-flow cases with a low tailwater
(yt/ycc,1) and hence where hydraulic control was
exerted by the structure

N high flows: those cases with a cover in place, and where
either the inlet or both inlet and outlet were submerged

– gated flows (labeled as G): those high-flow cases with
the inlet submerged, but with low-tailwater (yt/ycc,1)
conditions (and hence unsubmerged outlet)

– orifice flows (labeled as O): those high-flow cases with
both inlet and outlet submerged

Each series as discussed in the preceding section may
have more than one flow class. For example, a Type B*
flow might have occurred at small discharges, while
gated flows might have occurred at large discharges.
Further the above classes do not necessarily correspond
exactly to the HEC-RAS classes, because in HEC-RAS,
more detailed criteria are applied, such as a check on
the momentum, to refine the identification of classes.
For example, a Type A* flow as defined here could
potentially be determined to be a Type B HEC-RAS
flow. For that reason, they have been designated here
as A* and B* rather than A and B. A prefix (S or L) is
used to distinguish between the short and the long
structure.

The three basic models discussed previously in
Section 4.3 are assessed, namely HY-8, the default
HEC-RAS energy model, labeled as HR-E, and the
non-default HEC-RAS pressure-weir (labeled as HR-P)
model. As discussed in greater detail above, the two
HEC-RAS models give identical or nearly identical
results for low flows, but differ only in the treatment of
high flows. The performance metric is based on the
quantity, denoted as F, and defined as the ratio of the
model prediction to the observed value of HWm. The

mean, F , and standard deviation, SF, are evaluated for

each model for each flow class. The closer F is to 1 and

the smaller SF is, the better the model performance.
In addition, the fraction of points within a certain band
was also evaluated. Thus, f,0.9 will denote the fraction
of points with F,0.9, f,9,1.15. the fraction of points
with 0.9,F,1.15, and f.1.15, the fraction of points
with F.1.15. The closer f,0.9,1.15. is to 1 the better.
The asymmetric definition of the ‘‘acceptable’’ interval
(0.9, 1.15) reflects a preference for a more conservative,
i.e., better an overestimate than an underestimate,
prediction.

The performance statistics are summarized in Table
4.1, with the best model performance in each flow class
being highlighted. It is apparent that, for most flow
classes, even for the short structure, the predictions of
the HY-8 model agree most closely with the observa-
tions. Somewhat surprisingly, only for a flow class
with the long structure, L-A*, i.e., low flow Type A*,
did the HEC-RAS models (recall that both should give
the same or very similar results for low flows) prove
markedly superior to HY-8, due to HY-8 exhibiting a
pronounced tendency to overestimate HWm (though on
average only by 7%). As discussed in Section 4.3.5, this
is mainly attributed to a conservative misidentification
by HY-8 of the location of hydraulic control—outlet
control is determined based on the high tailwater, but
in reality inlet control prevailed (the observations
agreed with the HDS-5 inlet control model). Thus the
relatively poor performance of HY-8 is not necessarily
related to a culvert analysis not being applicable (after
all, this is applied to the long structure), but rather
specifically to the HY-8 conservative strategy of choos-
ing the higher tailwater estimate as correct. A more
refined criterion for the location of control under these
conditions, possibly incorporating a check on momen-
tum as in HEC-RAS, would likely improve the perfor-
mance of the HY-8 model. A related issue involves the
polynomial model to deal with inlet-control cases, and
the transition from unsubmerged- to submerged-inlet
cases, as this also tends to lead to notable overestima-
tion for some conditions.

The HEC-RAS bridge models, particularly the
default HEC-RAS energy, generally underpredicted
HWm, with a large fraction (over 30%) with F,0.9 for
several classes. This is of some concern, since more con-
servative estimates, implying higher HWm, are usually
preferred for design purposes. It is surprising that even
for the more bridge-like short structure the HEC-RAS
bridge models still underperformed relative to HY-8.
This may be explained for the Type B low flows and
gated high flows in i) the HY-8 inlet control equations
being better suited to the standard inlet geometry than
the more generic equations used in HEC-RAS, and ii)
the better modeling of effects of roughness. For Type O
high flows, the HEC-RAS orifice model performs as
well as (or very slightly better than) HY-8 for the short
structure. The reason for the relatively poor perfor-
mance of the HEC-RAS model for Type A* low flows
is less clear, but in many cases where HWm is grossly
underestimated for this flow class the tailwater level
is relatively low (though still above the critical depth
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in the culvert). This suggests that the flow is being
misidentified as a Type B flow, and a critical-flow
equation is being applied, when it should not be appl-
ied. As Type A* flows are likely the most commonly
occurring case, it does raise the broader question
whether for actual bridge flows the HEC-RAS bridge
model may actually tend to underestimate the upstream
water surface elevation.

More detailed analysis could be undertaken, such
as separating out the effect of roughness. HY-8 tends
to perform better in cases with roughness, as it auto-
matically incorporates flow resistance in its modeling,
while the HEC-RAS bridge model is quite limited in
this regard. Considering only smooth-bed flows for
both short and long structures shows HY-8 performing
comparably to HR-E, but somewhat worse than HR-P,
but both HR-E and HR-P perform comparatively
poorly for rough-bed cases, leading to the overall better
performance of HY-8.

Some qualifications in the interpretation of the above
statistics should be made, particularly the overall sta-
tistics. The study covered a wide range of discharges,
not all of which are necessarily relevant to routine
design. The smallest (and possibly the largest) dis-
charges at prototype scale might be considered rare,
and unlikely to occur in practice. Similarly, some
flow conditions such as the Type B* low flows may
have been given more weight than is warranted by
their frequency of occurrence under typical design
conditions.

Despite these qualifications, the results of Table 4.1
support the conclusion that conventional culvert hydra-
ulics as modeled in HY-8 can predict the headwater of
culvert-like structures, whether short or long, at least
as reliably and perhaps even better than the HEC-RAS
bridge models when default coefficients and settings
are used in the latter. It may be possible to improve the
performance of the HEC-RAS bridge models by judi-
cious selection of non-default coefficients and settings,
but this would require greater effort/experience on the
part of the engineer. A further consideration that was
not addressed in the current study, but may be pra-
ctically relevant is the effect of common inlet geometry
details, such as wingwalls. These would not be directly
modeled in HEC-RAS, but would be, at least for inlet-
control conditions, in HY-8. Just as the performance of
HEC-RAS can be improved, the predictions of HY-8
could also be improved, e.g., by identifying more
reliably the location of control, or by more accu-
rately treating the transition between unsubmerged-
and submerged-inlet control conditions.

The good performance of HY-8 for both long and
short structures also calls into question the notion
implicit in HDS-5-2012 and other sources that the
HEC-RAS bridge model by itself is inherently more
capable of dealing with large-span short water-encap-
sulating structures where the flow is entirely in the free-
surface regime, i.e., unsubmerged at both inlet and
outlet. The HEC-RAS bridge model does have some
broader flexibility in dealing with a wide range ofT
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non-standard non-prismatic geometries that may char-
acterize a typical bridge context. Where the tailwater
plays an important role, the good performance of HY-8
relies on reasonable specification of the tailwater level.
Approximations such as a ‘‘uniform’’-flow depth may
be convenient, but may not yield accurate results. HEC-
RAS has the decided advantage of being able to handle
complex systems, e.g., multiple structures in close pro-
ximity, so that difficulties in setting the tailwater level
can be lessened. If however only a culvert-like structure,
i.e., with standard inlet and constant barrel geometries,
is being considered in isolation, then with reliable input
data, HY-8 can arguably give superior results. The lar-
ger scale associated with large-span structures may
however be accompanied by other concerns, such as
stream instability or debris, that cannot be dealt with
by either HY-8 or HEC-RAS, but may receive greater
attention in a more comprehensive bridge-modeling
analysis than in a typical culvert-modeling effort.

4.5 Summary

Before an examination of the results of each
experimental series, some details of the computations
were given, together with reference curves or equations
that play a role in the presentation of the experimental
results. The eight pairs of experiments, comparing the
effects for the long and the short structure, were then
considered in turn. Finally, the predictions of HY-8 and
the HEC-RAS bridge models were assessed by compar-
ison with the experimental results.

5. SUMMARY, CONCLUSIONS, AND
RECOMMENDATIONS

A laboratory study of the headwater associated with
two types of water-encapsulating structures was carried
out in order to investigate whether the culvert hydrau-
lic analysis could be justifiably applied to large-span
culvert-like structures, namely relatively those with
large spans but relatively short streamwise length. Two
structures with a standard rectangular (box) geometry
of the same span (1.5 ft) and rise (0.5 ft), hence with
the same span-to-rise ratio of 3, but of different lengths,
2.1 ft and 8 ft, hence with length-to-span ratios of 1.4
and 5.3, were considered. In addition, experiments
without a culvert cover were also conducted to examine
so-called low-flow cases, in which the water surface
does not reach the culvert crown, and which might be
expected to occur more commonly for larger-span
structures. The range of flow conditions led to a range
of regimes, including that with the critical flow occurr-
ing either at the structure inlet or outlet, gated flow at
the inlet, orifice-like flow with both structure inlet and
outlet submerged, and the simple case where the flow
throughout the system was everywhere subcritical (so
with hydraulic control downstream of the structure).
The effect of roughness was also studied by installing
artificial roughness on the bed of both the structure and
the model channel.

A key aspect of the research was an assessment of the
standard software tools used in the hydraulic analysis
of culverts (HY-8) and of bridges (HEC-RAS bridge)
in their ability to predict reliably headwater, over the
entire range of imposed conditions. Two versions of the
HEC-RAS bridge model differing mainly in their
treatment of high flows (when the water surface or
total head reaches the structure low chord or crown)
were tested, the default applying the usual energy
equation, and the non-default applying a gated-flow
or an orifice-flow model with appropriate default
discharge coefficients.

The main conclusions from the study are:

N With accurate input data, conventional culvert hydrau-
lics can predict well the behavior of the headwater
for large-span structures that are relatively short in
the streamwise direction under a wide range of flow
conditions.

– This success can be attributed to the standard inlet
geometry of culvert-like structures that allows for a
more customized inlet-control model, and a more
flexible treatment of roughness or flow resistance
within the structure. The restriction to structures of
constant barrel geometry and the reliance on good
input data, specifically tailwater conditions, should
however be noted.

N The performance of the standard culvert hydraulics
software tool, HY-8, was found to be consistently as
good and for some flow classes superior to that of either
the default HEC-RAS energy-based model, or the non-
default HEC-RAS bridge model using the pressure-weir
option for high flows, when default choices of discharge
and other coefficients were accepted for the HEC-RAS
models.

– With default coefficients and setting, the HEC-RAS
bridge models exhibited a pronounced tendency
(especially the default HEC-RAS energy approach)
to underpredict the headwater.

On the basis of the results of the study, the following
recommendations may be made to the INDOT Hydra-
ulics group:

N The current policy restricting the use of conventional
culvert hydraulics analysis and HY-8 to structures with
span less than 20 ft can be justifiably revised to permit
their application to larger-span structures.

– Neither the current experimental study nor the con-
ventional theory of culvert hydraulics gives an upper
limit above which HY-8 may not be justified when
applied to a single culvert-like structure in isolation.
The practical limits of HY-8 are likely to be deter-
mined by other issues that could become more rele-
vant as the structure span and the project scale are
increased. These may include issues that can be better
handled by HEC-RAS such as a complex stream
system with multiple structures, making problematic
the treatment of any single structure in isolation, or
issues that neither HY-8 nor HEC-RAS can directly
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handle, such as stream instability, or debris. For the
latter type of problems, while a HEC-RAS analysis
does not necessarily offer any evident advantage, a
bridge-hydraulics design procedure that is more com-
prehensive than the typical culvert-hydraulics proce-
dure may be warranted.

– A policy wherein the upper limit on allowable struc-
ture span is gradually increased over phases, e.g., first
to 36 ft for an initial 3 or 4 years, and then even larger
if this initial phase is judged successful, is recommen-
ded as a prudent option.
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APPENDIX. ESTIMATION OF CHANNEL
CHARACTERISTICS

A.1 Channel Slope

The streams of Indiana are generally characterized
by small slopes, and so it was decided to perform
experiments with a small slope. Because the channel’s
jack system was not completely operational, experi-
ments were performed with only a single slope. A small
slope was set and then determined by measuring the bed
surface elevation at several sections and then compar-
ing these elevations with that of a still water surface.
The results are shown in Figure A.1. It should be
mentioned that the channel bed is made from three
sheets of Seaboard (2 sheets of length 8 ft, and 1 sheet

of length 4 ft) joined end to end, with the ends at x <0
in and x <-96 in, and so some of the scatter in the data
may be due to each sheet being of slightly different
slope. The average slope was estimated from a linear
regression to all of the data points, and was found to
be 0.0004¡0.00015; the best-fit line in Figure A.1
corresponds to a slope of 0.0004. Although this slope
is quite small, it was retained, as supercritical flow con-
ditions in the downstream channel could still be
achieved by lifting the tailgate completely. Thus, this
slope would permit modeling of Types A and B low
flows as well as the different high-flow types. Type C
low flows, where the flow is everywhere supercritical
could not be simulated but is expected to be rare at design
flows in Indiana, and so was excluded from the study.

Figure A.1 Measurements of still-water depths used to estimate channel slope.

Figure A.2 Water surface profile measurements for flow over a smooth (bare) bed and the best-fit computed profile obtained in
estimating Manning’s n (50.011); dashed line indicates location of culvert inlet.

26 Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2018/14



A.2 Channel Roughness

The surface of the Seaboard sheets forming the bed
and the sides of the channel was not perfectly smooth,
and for model simulations with HY-8 and HEC-RAS
the flow resistance coefficient (the Manning’s n) needed
to be estimated. The water surface profile within the
8-ft-long culvert barrel was measured, and then fitted
to a computed profile, assuming a channel slope of
S050.0004. The flow chosen for the profile fitting was
critical at the culvert outlet, so that a simple theoretical
check and constraint on the profile was available, and
at the same time varied sufficiently that a best-fit esti-
mate would give a meaningful result. Results are shown
in Figure A.2 for the chosen profile (discharge, Q5

0.56 cfs, so that critical depth, yc50.163 ft), where the

culvert inlet is located at x5-97.5 in and the outlet at
x50. Note that the nonlinear fitting was performed
only for the four points in the downstream half of the
culvert where the flow was gradually varied; the points
in the upstream half of the culvert were observed to be
strongly influenced by the rapidly varied inlet flow,
which made the computational assumptions question-
able. The best-fit estimate for Manning’s n was 0.011,
indicating the surface to be quite smooth. Due to the
small number of points on which this estimate is based,
the uncertainty is quite large (the standard error is
<0.0014). At the prototype scale, the corresponding
Manning’s n assuming a scale factor of 16 would be
<1.6 times the Manning’s n at the laboratory scale, so
that np<1.660.01150.018, which would be signifi-
cantly rougher than what would normally be assumed
for a concrete culvert (the default value for a concrete
box culvert in HY-8 is 0.012).

The effect of roughness or increased flow resistance
was studied by installing artificial roughness elements
in the form of a sheet of expanded-metal grating
(see Figure A.3). The Manning’s n for the roughened
channel was estimated in a similar manner as for the
bare channel. A complete water surface profile from the
downstream end of the channel to a section upstream of
the culvert inlet is shown in Figure A.4 for a discharge
of 1.13 cfs. Although the downstream gate was high,
so that it had no influence on the downstream flow,
the added roughness was sufficient to cause a sub-
critical downstream flow and hence tailwater (in the
absence of the roughness, the downstream flow would
have been supercritical). Included in Figure A.4 is the
best-fit profile (shown as a curve) obtained with a
Manning’s n of 0.020 (with a standard error of 0.0014)
by again fitting over the measured profile in the
downstream half of the culvert. The noticeable dips in

Figure A.4 Water surface profile measurements over the bed (with expanded-metal grating installed on bed as artificial
roughness) and the best-fit computed profile obtained in estimating Manning’s n (50.020); dashed line indicates the location of the
culvert inlet.

Figure A.3 Expanded-metal grating installed on the channel
(and culvert) bed as artificial roughness (the region shown is
the channel near the culvert outlet).
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the water surface profile, indicative of rapidly varied
flow in the vicinity of the culvert inlet and outlet should
be pointed out. Subsequent estimates of Manning’s
n for other flow conditions based on two-point mea-
surements downstream of the culvert suggested that
n varied with flow depth, possibly exceeding 0.04 at
the smallest depth (0.095 ft, which may be compa-
red with the 0.025 ft thickness of the expanded-metal
elements) to values of 0.015 at larger depths. These later

estimates are even more uncertain being based on mea-
surements at only two sections. A further consideration
stems from the non-uniform roughness, with a rela-
tively high roughness on the bed and a low rough-
ness on the walls (and perhaps culvert top). In view
of these different estimates of n, and effects due to
non-uniform roughness, it was decided to use an inter-
mediate value of 0.018 as a common value of n in the
model computations.
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